
Interactive Formal Verification
12: Modelling Hardware 

Tjark Weber
(Slides: Lawrence C Paulson)

Computer Laboratory
University of Cambridge



Basic Principles of Modelling



Basic Principles of Modelling

• Define mathematical abstractions of the objects of 
interest (systems, hardware, protocols,...).



Basic Principles of Modelling

• Define mathematical abstractions of the objects of 
interest (systems, hardware, protocols,...).

• Whenever possible, use definitions — not axioms!



Basic Principles of Modelling

• Define mathematical abstractions of the objects of 
interest (systems, hardware, protocols,...).

• Whenever possible, use definitions — not axioms!

• Ensure that the abstractions capture enough detail.

• Unrealistic models have unrealistic properties.

• Inconsistent models will satisfy all properties.



Basic Principles of Modelling

• Define mathematical abstractions of the objects of 
interest (systems, hardware, protocols,...).

• Whenever possible, use definitions — not axioms!

• Ensure that the abstractions capture enough detail.

• Unrealistic models have unrealistic properties.

• Inconsistent models will satisfy all properties.

All models involving the real world are approximate!
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Hardware Verification

• Pioneered by M. J. C. Gordon and his students, 
using successive versions of the HOL system.

• Used to model substantial hardware designs, 
including the ARM6 processor.

• Works hierarchically from arithmetic units and 
memories right down to flip-flops and transistors.

• Crucially uses higher-order logic, modelling signals as 
boolean-valued functions over time.



Devices as Relations

A relation in a, b, c, d

Specification Examples
• Simple combinational behaviour:!

"
#
$

#
$i2

i1 o

! Xor(i1, i2, o) = (o = ¬(i1 = i2))

• Bidirectional wires:

s d

g

! Ntran(g, s, d) = (g ⇒ (d = s))
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g → s = d

The relation describes the possible 
combinations of values on the ports.

Values could be bits, words, signals 
(functions from time to bits), etc

a
b

c
d

Dev
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Relational CompositionComposing Behaviours
• Consider the following two devices:

D1a x

S1[a, x]

D2x b

S2[x, b]

• Logical conjunction (∧) models the effect of connecting
components together:

D1 D2a b
x!

S1[a, x] ∧ S2[x, b]
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S1[a, x]
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Hiding Internal Structure
• Consider the composite device

D1 D2a b
x

S1[a, x] ∧ S2[x, b]

• Existential quantification (∃) models the effect of making
wires internal to the design:

D1 D2a b
x

∃x.S1[a, x] ∧ S2[x, b]

• Existential quantification is called a hiding operator—it
‘hides’ internal wires.

Modelling Hardware: TFM/MN/MJCG – p.11/32

the connected ports 
have some value
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Specifications and Correctness

• The implementation of a device in terms of other 
devices can be expressed by composition.

• The specification of the device’s intended behaviour 
can be given by an abstract formula.

• Sometimes the implementation and specification 
can be proved equivalent: Imp⇔Spec.

• The property Imp⇒Spec ensures that every 
possible behaviour of the Imp is permitted by Spec.

Impossible implementations satisfy all specifications!



The Switch Model of CMOSCMOS Primitives
• Formal specifications of primitives:

!
s d

g
! Ptran(g, s, d) = (¬g ⇒ (d = s))

s d

g
! Ntran(g, s, d) = (g ⇒ (d = s))

g
! Gnd g = (g = F)

p

"
! Pwr p = (p = T)

• This is the so-called switch model of CMOS.
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Full Adder: Specification
Another Example

• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit
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Full Adder: Implementation
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Full Adder in Isabelle

(∃b. P b) = (P True ∨ P False)
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• Cascading several full adders yields an n-bit adder.

•  The implementation is expressed recursively.

• The specification is obvious mathematics.
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Adder ImplementationAnother Example
• An n-bit ripple-carry adder:
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sn−1
internal wire, to be hidden

a zero-bit adder simply 
connects the carry lines!
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Partial Correctness Proof

assumptions

conclusion
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Using the Induction Hypothesis

internal wire
holds by ind hyp

name of ind hyp
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A Tiresome Calculation

rearranging the terms

replacing outputs by inputs
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The Finished Proof

implementation ⇒ 
specification
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Proving Equivalence

HELP!!

just need to prove this...
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A Crucial Lemma

a trivial upper bound on 
the value of a bit string

now proof is trivial, 
by arithmetic

inserting three 
instances of that fact
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The Opposite Implication

The implementation and 
specification are equivalent!
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Making Instances of Theorems

• thm [of a b c]
replaces variables by terms from left to right

• thm [where x=a]
replaces the variable x by the term a

• thm [OF thm1 thm2 thm3]
discharges premises from left to right 

• thm [simplified]
applies the simplifier to thm

• thm [attr1, attr2, attr3]
applying multiple attributes



The End

You know my methods.  Apply them!
Sherlock Holmes


