
Interactive Formal Verification
12: Modelling Hardware

Tjark Weber
(Slides: Lawrence C Paulson)

Computer Laboratory
University of Cambridge

Basic Principles of Modelling

Basic Principles of Modelling

• Define mathematical abstractions of the objects of
interest (systems, hardware, protocols,...).

Basic Principles of Modelling

• Define mathematical abstractions of the objects of
interest (systems, hardware, protocols,...).

• Whenever possible, use definitions — not axioms!

Basic Principles of Modelling

• Define mathematical abstractions of the objects of
interest (systems, hardware, protocols,...).

• Whenever possible, use definitions — not axioms!

• Ensure that the abstractions capture enough detail.

• Unrealistic models have unrealistic properties.

• Inconsistent models will satisfy all properties.

Basic Principles of Modelling

• Define mathematical abstractions of the objects of
interest (systems, hardware, protocols,...).

• Whenever possible, use definitions — not axioms!

• Ensure that the abstractions capture enough detail.

• Unrealistic models have unrealistic properties.

• Inconsistent models will satisfy all properties.

All models involving the real world are approximate!

Hardware Verification

Hardware Verification

• Pioneered by M. J. C. Gordon and his students,
using successive versions of the HOL system.

Hardware Verification

• Pioneered by M. J. C. Gordon and his students,
using successive versions of the HOL system.

• Used to model substantial hardware designs,
including the ARM6 processor.

Hardware Verification

• Pioneered by M. J. C. Gordon and his students,
using successive versions of the HOL system.

• Used to model substantial hardware designs,
including the ARM6 processor.

• Works hierarchically from arithmetic units and
memories right down to flip-flops and transistors.

Hardware Verification

• Pioneered by M. J. C. Gordon and his students,
using successive versions of the HOL system.

• Used to model substantial hardware designs,
including the ARM6 processor.

• Works hierarchically from arithmetic units and
memories right down to flip-flops and transistors.

• Crucially uses higher-order logic, modelling signals as
boolean-valued functions over time.

Devices as Relations

A relation in a, b, c, d

Specification Examples
• Simple combinational behaviour:!

"
#
$

#
$i2

i1 o

! Xor(i1, i2, o) = (o = ¬(i1 = i2))

• Bidirectional wires:

s d

g

! Ntran(g, s, d) = (g ⇒ (d = s))

Modelling Hardware: TFM/MN/MJCG – p.7/32

g → s = d

The relation describes the possible
combinations of values on the ports.

Values could be bits, words, signals
(functions from time to bits), etc

a
b

c
d

Dev

Relational Composition

Relational CompositionComposing Behaviours
• Consider the following two devices:

D1a x

S1[a, x]

D2x b

S2[x, b]

• Logical conjunction (∧) models the effect of connecting
components together:

D1 D2a b
x!

S1[a, x] ∧ S2[x, b]

Modelling Hardware: TFM/MN/MJCG – p.10/32

two devices modelled
by two formulas

Relational CompositionComposing Behaviours
• Consider the following two devices:

D1a x

S1[a, x]

D2x b

S2[x, b]

• Logical conjunction (∧) models the effect of connecting
components together:

D1 D2a b
x!

S1[a, x] ∧ S2[x, b]

Modelling Hardware: TFM/MN/MJCG – p.10/32

two devices modelled
by two formulas

Composing Behaviours
• Consider the following two devices:

D1a x

S1[a, x]

D2x b

S2[x, b]

• Logical conjunction (∧) models the effect of connecting
components together:

D1 D2a b
x!

S1[a, x] ∧ S2[x, b]

Modelling Hardware: TFM/MN/MJCG – p.10/32

the connected ports
have the same value

Relational CompositionComposing Behaviours
• Consider the following two devices:

D1a x

S1[a, x]

D2x b

S2[x, b]

• Logical conjunction (∧) models the effect of connecting
components together:

D1 D2a b
x!

S1[a, x] ∧ S2[x, b]

Modelling Hardware: TFM/MN/MJCG – p.10/32

two devices modelled
by two formulas

Composing Behaviours
• Consider the following two devices:

D1a x

S1[a, x]

D2x b

S2[x, b]

• Logical conjunction (∧) models the effect of connecting
components together:

D1 D2a b
x!

S1[a, x] ∧ S2[x, b]

Modelling Hardware: TFM/MN/MJCG – p.10/32

the connected ports
have the same value

Hiding Internal Structure
• Consider the composite device

D1 D2a b
x

S1[a, x] ∧ S2[x, b]

• Existential quantification (∃) models the effect of making
wires internal to the design:

D1 D2a b
x

∃x.S1[a, x] ∧ S2[x, b]

• Existential quantification is called a hiding operator—it
‘hides’ internal wires.

Modelling Hardware: TFM/MN/MJCG – p.11/32

the connected ports
have some value

Specifications and Correctness

Specifications and Correctness

• The implementation of a device in terms of other
devices can be expressed by composition.

Specifications and Correctness

• The implementation of a device in terms of other
devices can be expressed by composition.

• The specification of the device’s intended behaviour
can be given by an abstract formula.

Specifications and Correctness

• The implementation of a device in terms of other
devices can be expressed by composition.

• The specification of the device’s intended behaviour
can be given by an abstract formula.

• Sometimes the implementation and specification
can be proved equivalent: Imp⇔Spec.

Specifications and Correctness

• The implementation of a device in terms of other
devices can be expressed by composition.

• The specification of the device’s intended behaviour
can be given by an abstract formula.

• Sometimes the implementation and specification
can be proved equivalent: Imp⇔Spec.

• The property Imp⇒Spec ensures that every
possible behaviour of the Imp is permitted by Spec.

Specifications and Correctness

• The implementation of a device in terms of other
devices can be expressed by composition.

• The specification of the device’s intended behaviour
can be given by an abstract formula.

• Sometimes the implementation and specification
can be proved equivalent: Imp⇔Spec.

• The property Imp⇒Spec ensures that every
possible behaviour of the Imp is permitted by Spec.

Impossible implementations satisfy all specifications!

The Switch Model of CMOSCMOS Primitives
• Formal specifications of primitives:

!
s d

g
! Ptran(g, s, d) = (¬g ⇒ (d = s))

s d

g
! Ntran(g, s, d) = (g ⇒ (d = s))

g
! Gnd g = (g = F)

p

"
! Pwr p = (p = T)

• This is the so-called switch model of CMOS.

Modelling Hardware: TFM/MN/MJCG – p.17/32

The Switch Model of CMOSCMOS Primitives
• Formal specifications of primitives:

!
s d

g
! Ptran(g, s, d) = (¬g ⇒ (d = s))

s d

g
! Ntran(g, s, d) = (g ⇒ (d = s))

g
! Gnd g = (g = F)

p

"
! Pwr p = (p = T)

• This is the so-called switch model of CMOS.

Modelling Hardware: TFM/MN/MJCG – p.17/32

Full Adder: Specification
Another Example

• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

a b

cincout

sum
2 × cout + sum = a + b + cin

Full Adder: Specification
Another Example

• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

a b

cincout

sum
2 × cout + sum = a + b + cin

Full Adder: Implementation

Full Adder in Isabelle

Full Adder in Isabelle

(∃b. P b) = (P True ∨ P False)

An n-bit Ripple-Carry Adder

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

an−1 bn−1

sn−1

An n-bit Ripple-Carry Adder

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

an−1 bn−1

sn−1

• Cascading several full adders yields an n-bit adder.

An n-bit Ripple-Carry Adder

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

an−1 bn−1

sn−1

• Cascading several full adders yields an n-bit adder.

• The implementation is expressed recursively.

An n-bit Ripple-Carry Adder

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

an−1 bn−1

sn−1

• Cascading several full adders yields an n-bit adder.

• The implementation is expressed recursively.

• The specification is obvious mathematics.

Adder Specification

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

Adder Specification

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

values of n-bit words

Adder Specification

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

values of n-bit words

Adder Specification

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

values of n-bit words

Adder Specification

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

values of n-bit words

Adder Specification

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

values of n-bit words

Adder ImplementationAnother Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

an−1 bn−1

sn−1

Adder ImplementationAnother Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

an−1 bn−1

sn−1

Adder ImplementationAnother Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

an−1 bn−1

sn−1
internal wire, to be hidden

Adder ImplementationAnother Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

an−1 bn−1

sn−1
internal wire, to be hidden

Adder ImplementationAnother Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

an−1 bn−1

sn−1
internal wire, to be hidden

a zero-bit adder simply
connects the carry lines!

Partial Correctness Proof

Partial Correctness Proof

assumptions

Partial Correctness Proof

assumptions

conclusion

Using the Induction Hypothesis

Using the Induction Hypothesis

internal wire

Using the Induction Hypothesis

internal wire
holds by ind hyp

Using the Induction Hypothesis

internal wire
holds by ind hyp

name of ind hyp

A Tiresome Calculation

A Tiresome Calculation

rearranging the terms

A Tiresome Calculation

rearranging the terms

replacing outputs by inputs

The Finished Proof

The Finished Proof

implementation ⇒
specification

Proving Equivalence

Proving Equivalence
just need to prove this...

Proving Equivalence

HELP!!

just need to prove this...

A Crucial Lemma

A Crucial Lemma

a trivial upper bound on
the value of a bit string

A Crucial Lemma

a trivial upper bound on
the value of a bit string

inserting three
instances of that fact

A Crucial Lemma

a trivial upper bound on
the value of a bit string

now proof is trivial,
by arithmetic

inserting three
instances of that fact

The Opposite Implication

The Opposite Implication

The implementation and
specification are equivalent!

Making Instances of Theorems

Making Instances of Theorems

• thm [of a b c]
replaces variables by terms from left to right

Making Instances of Theorems

• thm [of a b c]
replaces variables by terms from left to right

• thm [where x=a]
replaces the variable x by the term a

Making Instances of Theorems

• thm [of a b c]
replaces variables by terms from left to right

• thm [where x=a]
replaces the variable x by the term a

• thm [OF thm1 thm2 thm3]
discharges premises from left to right

Making Instances of Theorems

• thm [of a b c]
replaces variables by terms from left to right

• thm [where x=a]
replaces the variable x by the term a

• thm [OF thm1 thm2 thm3]
discharges premises from left to right

• thm [simplified]
applies the simplifier to thm

Making Instances of Theorems

• thm [of a b c]
replaces variables by terms from left to right

• thm [where x=a]
replaces the variable x by the term a

• thm [OF thm1 thm2 thm3]
discharges premises from left to right

• thm [simplified]
applies the simplifier to thm

• thm [attr1, attr2, attr3]
applying multiple attributes

The End

You know my methods. Apply them!
Sherlock Holmes

