Interactive Formal Verification 12: Modelling Hardware

Tjark Weber
(Slides: Lawrence C Paulson)
Computer Laboratory
University of Cambridge

Basic Principles of Modelling

Basic Principles of Modelling

- Define mathematical abstractions of the objects of interest (systems, hardware, protocols,...).

Basic Principles of Modelling

- Define mathematical abstractions of the objects of interest (systems, hardware, protocols,...).
- Whenever possible, use definitions - not axioms!

Basic Principles of Modelling

- Define mathematical abstractions of the objects of interest (systems, hardware, protocols,...).
- Whenever possible, use definitions - not axioms!
- Ensure that the abstractions capture enough detail.
- Unrealistic models have unrealistic properties.
- Inconsistent models will satisfy all properties.

Basic Principles of Modelling

- Define mathematical abstractions of the objects of interest (systems, hardware, protocols,...).
- Whenever possible, use definitions - not axioms!
- Ensure that the abstractions capture enough detail.
- Unrealistic models have unrealistic properties.
- Inconsistent models will satisfy all properties.

All models involving the real world are approximate!

Hardware Verification

Hardware Verification

- Pioneered by M.J. C. Gordon and his students, using successive versions of the HOL system.

Hardware Verification

- Pioneered by M.J. C. Gordon and his students, using successive versions of the HOL system.
- Used to model substantial hardware designs, including the ARM6 processor.

Hardware Verification

- Pioneered by M.J.C. Gordon and his students, using successive versions of the HOL system.
- Used to model substantial hardware designs, including the ARM6 processor.
- Works hierarchically from arithmetic units and memories right down to flip-flops and transistors.

Hardware Verification

- Pioneered by M.J. C. Gordon and his students, using successive versions of the HOL system.
- Used to model substantial hardware designs, including the ARM6 processor.
- Works hierarchically from arithmetic units and memories right down to flip-flops and transistors.
- Crucially uses higher-order logic, modelling signals as boolean-valued functions over time.

Devices as Relations

A relation in a, b, c, d

$$
g \rightarrow s=d
$$

The relation describes the possible combinations of values on the ports.

Values could be bits, words, signals (functions from time to bits), etc

Relational Composition

Relational Composition

two devices modelled by two formulas

Relational Composition

two devices modelled by two formulas

the connected ports have the same value

Relational Composition

$\mathrm{S}_{1}[a, x] \quad \mathrm{S}_{2}[x, b]$

$\mathrm{S}_{1}[a, x] \wedge \mathrm{S}_{2}[x, b]$

$\exists x . \mathbf{S}_{1}[a, x] \wedge \mathbf{S}_{2}[x, b]$
two devices modelled by two formulas
the connected ports have the same value
the connected ports have some value

Specifications and Correctness

Specifications and Correctness

- The implementation of a device in terms of other devices can be expressed by composition.

Specifications and Correctness

- The implementation of a device in terms of other devices can be expressed by composition.
- The specification of the device's intended behaviour can be given by an abstract formula.

Specifications and Correctness

- The implementation of a device in terms of other devices can be expressed by composition.
- The specification of the device's intended behaviour can be given by an abstract formula.
- Sometimes the implementation and specification can be proved equivalent: $\operatorname{Imp} \Leftrightarrow$ Spec.

Specifications and Correctness

- The implementation of a device in terms of other devices can be expressed by composition.
- The specification of the device's intended behaviour can be given by an abstract formula.
- Sometimes the implementation and specification can be proved equivalent: $\operatorname{Imp} \Leftrightarrow S p e c$.
- The property $\operatorname{Im} p \Rightarrow$ Spec ensures that every possible behaviour of the Imp is permitted by Spec.

Specifications and Correctness

- The implementation of a device in terms of other devices can be expressed by composition.
- The specification of the device's intended behaviour can be given by an abstract formula.
- Sometimes the implementation and specification can be proved equivalent: $\operatorname{Imp} \Leftrightarrow S p e c$.
- The property $\operatorname{Im} p \Rightarrow$ Spec ensures that every possible behaviour of the $I m p$ is permitted by Spec. Impossible implementations satisfy all specifications!

The Switch Model of CMOS

$$
\begin{aligned}
& \mathrm{O} \\
& p
\end{aligned} \quad \mathrm{Pwr} p=(p=\mathbf{T})
$$

$$
\begin{aligned}
& \text {, ind } \\
& \text {, }-\frac{1}{2} d \\
& \operatorname{Ntran}(g, s, d)=(g \Rightarrow(d=s)) \\
& \stackrel{g}{\perp} \quad \text { Gnd } g=(g=\mathbf{F})
\end{aligned}
$$

The Switch Model of CMOS

$\operatorname{Ntran}(g, s, d)=(g \Rightarrow(d=s))$

$$
\stackrel{g}{\stackrel{ }{\perp} \quad \text { Gnd } g=(g=\mathbf{F})}
$$

$$
\begin{aligned}
& \rho \\
& p
\end{aligned} \quad \operatorname{Pwr} p=(p=\mathbf{T})
$$

```
subsection{* Specification of CMOS primitives *}
text{* P and N transistors *}
definition "Ptran = (\lambda(g,a,b). ( ~g \longrightarrowa = b))"
definition "Ntran = (\lambda(g,a,b). (g\longrightarrowa=b))"
text{* Power and Ground*}
definition "Pwr p = (p = True)"
definition "Gnd p = ( }p=\mathrm{ False)"
```


Full Adder: Specification

$2 \times$ cout + sum $=a+b+$ cin

Full Adder: Specification

$2 \times$ cout + sum $=a+b+$ cin
text\{* 1-bit full adder specification *\}
text\{* Convert boolean to number (0 or 1) *\} definition bit_val :: "bool \Rightarrow nat" where
"bit_val $p=(i f p$ then 1 else 0)"
definition "Add1Spec $=(\lambda(a, b$, cin, sum, cout $)$. 2*(bit_val cout) + bit_val sum = bit_val a + bit_val b + bit_val cin)"

Full Adder: Implementation

Full Adder in Isabelle

Full Adder in Isabelle

An n-bit Ripple-Carry Adder

An n-bit Ripple-Carry Adder

- Cascading several full adders yields an n-bit adder.

An n-bit Ripple-Carry Adder

- Cascading several full adders yields an n-bit adder.
- The implementation is expressed recursively.

An n-bit Ripple-Carry Adder

- Cascading several full adders yields an n-bit adder.
- The implementation is expressed recursively.
- The specification is obvious mathematics.

Adder Specification

$\left(2^{n} \times\right.$ cout $)+s=a+b+$ cin

Adder Specification

$$
\left(2^{n} \times \text { cout }\right)+s=\underbrace{a}+b+\text { vin }
$$

Adder Specification


```
text{* Unsigned number denoted by bitstring f(n-1)...f(0) *}
fun bits_val where
    "bits_val f 0 = 0"
| "bits_val f (Suc n) = 2^n * bit_val(f n) + bits_val f n"
text{* Specification of an n-bit adder *}
definition
    "AdderSpec n = (\lambda(a, b, cin, sum, cout).
        2^n * bit_val cout + bits_val sum n =
        bits_val a n + bits_val b n + bit_val cin)"
```


Adder Specification

$\left(2^{n} \times \operatorname{cout}\right)+s=a+\underbrace{b+\operatorname{cin}}_{\text {values of } n \text {-bit words }}$

```
text{* Unsigned number denoted by bitstring f(n-1)...f(0) *}
fun bits_val where
    "bits_val f 0
| "bits_val f (Suc n) = 2^n * bit_val(f n) + bits_val. f n"
text{* Specification of an n-bit adder *}
definition
    "AdderSpec n = (\lambdada, b, cin, sum, cout).
        2^n * bit_val cout + bits_val sum n =
        bits_val a n + bits_val b n + bit_val cin)"
```


Adder Specification

```
    (2n}\times\mathrm{ cout })+s=a+b+ci
    values of n-bit words
text{* Unsigned number denoted by bitstring f(n-1)...f(0) *}
fun bits_val where
    "bits_val f 0
| "bits_val f (Suc n) = 2^n * bit_val(f n) + bits_val f n"
text{* Specification of an n-bit adder *}
definition
    "AdderSpec n = (\lambdava, b, cin, sum, cout).
        2^n * bit_val cout + bits_val sum n =
        bits_val a n + bits_val b n + bit_val cin)"
```


Adder Specification

Adder Implementation

Adder Implementation

text\{* Implementation of an n-bit ripple-carry adder*\}
fun Adder Imp where
"AdderImp 0 (a, b, cin, sum, cout) = (cout = cin)"
| "AdderImp (Suc n) (a, b, cin, sum, cout) =
(\exists c. AdderImp n (a, b, cin, sum, c) ^
Add1Imp (a $n, b n, c$, sum n, cout))"

Adder Implementation

text\{* Implementation of an n-bit ripple-carry adder*\}
fun Adder Imp where
"AdderImp 0 (a, b, cin, sum, cout) = (cout = cin)"
| "AdderImp (Suc n) (a, b, cin, sum, cout) =
(\exists c. Adder Imp n (a, b, cin, sum, c) ^
Add1Imp (a $n, b n, c$, sum n, cout))"

Adder Implementation

Adder Implementation

a zero-bit adder simply connects the carry lines!

Partial Correctness Proof


```
lemma AdderCorrect:
    "AdderImp n (a, b, cin, sum, cout) \Longrightarrow AdderSpec n (a, b, cin, sum, cout)"
proof (induct n arbitrary: cout)
    case 0 thus ?case
            by (simp add: AdderSpec_def)
next
    case (Suc n)
- then obtain c
            where AddS: "AdderSpec n (a, b, cin, sum, c)"
            and Add1: "Add1Imp (a n, b n, c, sum n, cout)"
            by (auto intro: Suc)
-u-:--- Adder.thy 53% L85 (Isar Utoks Abbrev; Scripting)-------------------
this:
    AdderImp n (a, b, cin, sum, ?cout) \Longrightarrow AdderSpec n (a, b, cin, sum, ?cout)
    AdderImp (Suc n) (a, b, cin, sum, cout)
goal (1 subgoal):
    1. \n cout.
        |^cout.
            AdderImp n (a, b, cin, sum, cout) }
            AdderSpec n (a, b, cin, sum, cout);
            AdderImp (Suc n) (a, b, cin, sum, cout)】
            AdderSpec (Suc n) (a, b, cin, sum, cout)
-u-:%%- *goals* 5% L4 (Isar Proofstate Utoks Abbrev;)
```


Partial Correctness Proof

Partial Correctness Proof

Using the Induction Hypothesis

A Tiresome Calculation

A Tiresome Calculation

A Tiresome Calculation

The Finished Proof


```
text{* Partial correctness of ripple-carry adder for all n by induction *}
lemma AdderCorrect:
    "AdderImp n (a, b, cin, sum, cout) \Longrightarrow AdderSpec n (a, b, cin, sum, cout)"
proof (induct n arbitrary: cout)
    case 0 thus ?case
            by (simp add: AdderSpec_def)
next
    case (Suc n)
    then obtain c
            where AddS: "AdderSpec n (a, b, cin, sum, c)"
            and Add1: "Add1Imp (a n, b n, c, sum n, cout)"
            by (auto intro: Suc)
    have "bit_val (sum n) * (2 ^ n) + bit_val cout * (2 * 2 ^ n) =
                        (bit_val (sum n) + (bit_val cout * 2)) * (2 ^ n)"
            by (simp add: algebra_simps)
    also have "... = (bit_val c + (bit_val (a n) + bit_val (b n))) *
                            (2 ^ n)"
            using Add1 by (simp add: Add1Correct Add1Spec_def)
        finally show "AdderSpec (Suc n) (a, b, cin, sum, cout)" using AddS
            by (simp add: AdderSpec_def algebra_simps)
qed

\section*{The Finished Proof}

```

text{* Partial correctness of ripple-carry adder for all n by induction *}
lemma AdderCorrect:
"AdderImp n (a, b, cin, sum, cout) }=>\mathrm{ AdderSpec n (a, b, cin, sum, cout)"
proof (induct n arbitrary: cout)
case 0 thus ?case
by (simp add: AdderSpec_def)
implementation }
next
specification
case (Suc n)
then obtain c
where AddS: "AdderSpec n (a, b, cin, sum, c)"
and Add1: "Add1Imp (a n, b n, c, sum n, cout)"
by (auto intro: Suc)
have "bit_val (sum n) * (2 ^ n) + bit_val cout * (2 * 2 ^ n) =
(bit_val (sum n) + (bit_val cout * 2)) * (2 ^ n)"
by (simp add: algebra_simps)
also have "... = (bit_val.c + (bit_val. (a n) + bit_val. (b n))) *
(2 ^ n)"
using Add1 by (simp add: Add1Correct Add1Spec_def)
finally show "AdderSpec (Suc n) (a, b, cin, sum, cout)" using AddS
by (simp add: AdderSpec_def algebra_simps)
qed

Proving Equivalence

Proving Equivalence

Proving Equivalence

A Crucial Lemma


```
lemma bits_val_less: "bits_val f n < 2^n"
by (induct n, auto simp add: bit_val_def)
lemma AdderSpec_Suc:
    "AdderSpec (Suc n) (a, b, cin, sum, cout) =
    (\existsc. AdderSpec n (a, b, cin, sum, c) & Add1Spec (a n, b n, c, sum n, cout?
s))"
using bits_val_less [of a n] bits_val_less [of b n] bits_val_less [of sum n]
b by (simp add: AdderSpec_def Add1Spec_def ex_bool_eq bit_val_def)
-u-:--- Adder.thy
proof (prove): step 1
using this:
    bits_val a n < 2 ^ n
    bits_val b n < 2 ^ n
    bits_val sum n < 2 ^ n
goal (1 subgoal):
    1. AdderSpec (Suc n) (a, b, cin, sum, cout) =
        (\existsc. AdderSpec n (a, b, cin, sum, c) ^
            Add1Spec (a n, b n, c, sum n, cout))
-u-:%%- *goals* 1% L2 (Isar Proofstate Utoks Abbrev;)------------------
```


A Crucial Lemma

A Crucial Lemma

A Crucial Lemma

The Opposite Implication

The Opposite Implication

Making Instances of Theorems

Making Instances of Theorems

- thm [of $a b c$]
replaces variables by terms from left to right

Making Instances of Theorems

- thm [of $a b c$]
replaces variables by terms from left to right
- thm [where $x=a$]
replaces the variable x by the term a

Making Instances of Theorems

- thm [of $a b c$]
replaces variables by terms from left to right
- thm [where $x=a$]
replaces the variable x by the term a
- thm [OF thm m_{1} thm m_{2} thm m_{3}] discharges premises from left to right

Making Instances of Theorems

- thm [of $a b c$]
replaces variables by terms from left to right
- thm [where $x=a$]
replaces the variable x by the term a
- thm [OF thm m_{1} thm m_{2} thm m_{3}] discharges premises from left to right
- thm [simplified] applies the simplifier to $t h m$

Making Instances of Theorems

- thm [of $a b c$]
replaces variables by terms from left to right
- thm [where $x=a$]
replaces the variable x by the term a
- thm [OF thm I_{1} thm m_{2} thm m_{3}] discharges premises from left to right
- thm [simplified] applies the simplifier to thm
- thm [attr $_{1}$, attr $_{2}$, attr $_{3}$] applying multiple attributes

The End

You know my methods. Apply them!

Sherlock Holmes

